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Abstract
Backgrounds: To investigate associations of genetic factors and environmental factors with 
coronary artery disease (CAD), we collected medical reports, lifestyle details, and blood samples of 
2113 individuals, and then used the polymerase chain reaction (PCR)-ligase detection reaction 
(LDR) to genotype the targeted 102 SNPs.  Methods: We adopted elastic net algorithm to build 
an association model that considered simultaneously genetic and lifestyle/clinical factors associated 
with CAD in Chinese Han population.  Results: In this study, we developed an all covariates-
based model to explain the risk of CAD, which incorporated 8 lifestyle/clinical factors and a gene-
score variable calculated from 3 significant SNPs (rs671, rs6751537 and rs11641677), attaining an 
area under the curve (AUC) value of 0.71. It is found that, in terms of genetic variants, the AA 
genotype of rs671 in the additive (adjusted odds ratio (OR)=2.51, p=0.008) and recessive (adjusted 
OR=2.12, p=0.021) models, the GG genotype of rs6751537 in the additive (adjusted OR=3.36, 
p=0.001) and recessive (adjusted OR=3.47, p=0.001) models, and GG genotype of rs11641677 in 
additive model (adjusted OR=0.39, p=0.044) was associated with increased risk of CAD. In terms 
of lifestyle/clinical factors, the history of hypertension (unadjusted OR=2.37, p<0.001) and 
dyslipidemia (unadjusted OR=1.82, p=0.007), age (unadjusted OR=1.07, p<0.001) and waist 
circumference (unadjusted OR=1.02, p=0.05) would significantly increase the risk of CAD, while 
height (unadjusted OR=0.97, p=0.006) and regular intake of chicken (unadjusted OR=0.78, p=0.008) 
reduced the risk of CAD. A significant interaction was found between rs671 and dyslipidemia (the 
relative excess risk due to interaction (RERI) = 3.36, p=0.05).  Conclusion: In this study, we 
constructed an association mode and identified a set of SNPs and lifestyle/clinical risk factors of 
CAD in Chinese Han population. By considering both genetic and non-genetic risk factors, the built 
model may provide implications for CAD pathogenesis and clues for screening tool development in 
Chinese Han population.
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Introduction
In recent years, along with the trend of longevity and the improvement in health, 

cardiovascular disease, including stroke and coronary heart disease (CAD), is considered one of the 
leading causes of death. It is estimated that more than 7 million people die from the disease each 
year[1, 2]. Recent evidence from the epidemiologic literatures suggests that the mortality due to CAD 
is as high as 11.1 million worldwide, of which 1.3 million are in China[3, 4]. 

 The biological and epidemiological evidence suggest that CAD is a complex disorder 
resulting from the interplay of genetic and non-genetic factors: (1) genetic variation; (2) 
physiological factors, such as hypertension, diabetes, obesity and so on; (3) smoking, drinking, diet, 
physical activity and other unhealthy lifestyle behaviors; (4) environmental pollution exposures; (5) 
interaction between various factors[5-9]. 

Genetic factors contribute significantly to the risk of CAD. In 2007, chromosome 9p21 was 
discovered and replicated as the first genetic risk variant of CAD[10, 11]. Since then, a growing 
number of large-scale and population-specific studies have been conducted to identify CAD-related 
susceptibility loci. Until recently, by using the trans-ancestry meta-analysis, studies were 
continually reporting results of 35 newly discovered susceptibility loci associated with CAD risk[12]. 
In the past two decades, more than 200 CAD susceptibility loci have been identified[13]. These risk 



variants were found to affect CAD risk via various pathogeneses and mechanisms[13, 14], such as 
lipid metabolism (e.g., PCSK9[15], LPA[16], APOB[17], APOE[18] and BCMO1[19, 20]), alcohol 
metabolism (e.g., ALDH2[21, 22]), adipose tissue development (e.g., ADCY3[23, 24]), blood pressure 
(e.g., SH2B3[25]), etc. For instance, PCSK9 coding protein, proprotein convertase subtilisin/kexin 
type 9, could affects low-density lipoprotein cholesterol (LDL-C) receptors while PCSK9 inhibitors 
could be used to reduce plasma LDL-C levels and influence the incidence of CAD[15]. Aldehyde 
dehydrogenase 2 (coded by ALDH2) is an important oxidase involved in alcohol metabolism in cell 
mitochondria, which has a protective effect on cell damage caused by oxidative stimulation. It can 
also delay the process of cardiovascular diseases by reducing the occurrence of vascular endothelial 
inflammation[21, 22]. It is believed that, these discovered genetic risk variants can be further used to 
create genetic risk scores, thereby improve risk prediction beyond traditional risk factors[12].

In addition to genetic factors, many other risk factors are considered important to the incident 
of cardiovascular diseases, such as diabetes, obesity, physical activity, diet, smoking, and alcohol 
consumption[5-8]. Previous studies have shown that, the leading risk factor for cardiovascular 
mortality in both men and women in China and other East Asia area is hypertension[22].

Therefore, in this study, by utilizing the elastic net algorithm, we sought to build an association 
model of CAD that considering both genetic and clinical/lifestyle-related factors simultaneously. 
By doing this, we expected to identify impactful biomarkers associated with CAD risk before 
incidence of the disease. And then, with the identified genetic and non-genetic factors, we also plan 
to comprehensively explore possible interactions between these factors to assess their high-
dimension impact on CAD risk, so as to provide insights into the pathogenesis of CAD.

Methods

Subjects

Cluster random sampling was used to recruit 2,323 non-CAD subjects who underwent physical 
examination at the community health service centers in 4 townships under the jurisdiction of a 
certain district of Ningbo, Zhejiang Province from April 2013 to July 2013. All subjects were 
unrelated and over 40 years of age. Patients diagnosed with CAD before April 2013, as well as 
patients with severe liver and kidney disease and malignant tumors were excluded. We collected 
blood samples, medical records and lifestyle details for all individuals, then used the polymerase 
chain reaction (PCR)-ligase detection reaction (LDR) to genotype the target single nucleotide 
polymorphisms (SNPs). The field epidemiological investigation mainly included basic demographic 
criteria and a standard questionnaire for lifestyle exposures, which was described in details in 
previous studies[20]. The incidence of coronary atherosclerosis was investigated in August 2016. 
Due to various factors such as moving house, death and so on, 10.04% of the subjects were lost to 
follow-up after 3 years in August 2016, leaving a total of 2113 people as our study subjects. The 
study design is shown in Figure 1.



Figure 1. Study design
Ethical approval statement

This study was approved by the Medical Ethics Committee of Hangzhou Normal University 
(No.2013020). This study was exempted from the requirement for individual informed consent 
because all data were anonymized during the entire study. All methods were performed in 
accordance with the relevant guidelines and regulations.

 

Diagnostic criteria

CAD is usually diagnosed by electrocardiogram, electrocardiogram load test, dynamic 
electrocardiogram, ultrasonic electrocardiogram, hematologic examination, coronary computed 
tomography (CT), coronary angiography or intravascular imaging. In our study, the standard 
Judkins technique was used to performing coronary angiography, the diagnostic criteria for coronary 
atherosclerotic heart disease are based on the China Health and Family Planning Commission in 
2010[26]. CAD was defined as more than 1 (≥) atherosclerotic plaque in a major coronary artery 
(≥1.5 mm lumen diameter) causing ≥50% luminal diameter stenosis by the quantitative coronary 
angiography (QCA) test. Asymptomatic coronary heart disease, angina pectoris or ischemic 
cardiomyopathy, coronary artery ischemia, myocardial infarction, all belong to coronary heart 
disease.

SNP selection and genotyping

The process of SNP selection is as follows: firstly, we searched literatures from large 



bibliographic databases (e.g., PubMed, MEDLINE, EMBASE) to collect related polymorphisms of 
coronary atherosclerosis or its relevant conditions (e.g., lipid levels, hypertension, diabetes and 
obesity); then, we selected GeneView information, missense mutation, 3’ un-translation region 
(UTR), 5’ UTR or transcription factor binding sites of the selected SNPs from GeneCards database 
and NCBI database; after that, the minor allele frequency (MAF) of SNPs in Chinese population 
was detected from the HapMap database of the international human genome, and the SNPs with 
MAF value greater than 0.05 were retained. Finally, 102 SNPs located in genes such as ALDH2, 
ABCA1, ALDH2, BCMO1, SLC12A3, PCSK9 etc., were selected for subsequent genotyping process. 
All genotyped SNPs were summarized in Table S1. 

The isolation of genomic DNA is described in detail in previous studies[27]. All blood samples 
were collected by venipuncture from fasted participants, anticoagulated with EDTA and preserved 
at -80℃. The Tiangen Blood Genomic DNA extraction kits was used to extract DNA while the 
PCR-LDR reactions were adopted for SNP genotyping. Specifically, the PCR reactions were 
conducted in an ABI Prism 7000 Sequence Detection System with an initial melting at 94 °C for 3 
min, 35 cycles of denaturation at 94 °C for 15 s, annealing at 55 °C for 15 s, extension at 72 °C for 
30 s, and final extension at 72 °C for 3 min. Each reaction consisted 1 µL genomic DNA, 1.5 µL 
MgCl2, 1.5 µL 10× PCR buffer, 0.15 µL each primer, 0.3 µL dNTPs, and 0.2 µL Taq DNA 
polymerase in a total volume of 15 µl. The LDR reactions were performed in 30 cycles at 94 °C for 
30 s and 56 °C for 3 min. Each reaction contained 3 µL PCR product, 1 µL 10×Taq DNA ligase 
buffer, 5 U Taq DNA ligase, and 0.01 µL each discriminating probe in a total volume of 10 µL. 
Re‐sequencing results for 10% of the samples showed that the concordance rates were ˃95% for all 
target SNPs.

Statistical analysis

Statistical analysis was conducted with SPSS 24.0 software (SPSS, Inc., Chicago, IL, USA) 
and RStudio (Version 1.1.456. RStudio: Integrated development environment for R. Boston, MA, 
USA; http://www.rstudio.org/). The t-test (for continuous variable) and chi-square test (for 
categorical variable) were used to evaluated the association between demographic characteristics or 
SNPs and CAD individually. Elastic net regularization, characterized by reducing over fitting and 
co-variate correlation, was implemented from R package glmnet for feature selection and 
multivariate CAD-association model construction[26]. When the set of features are large and may 
have potential high-dimensional interaction, the technique has been shown to be superior to other 
analysis methods[28]. To investigate the CAD risk from both genetic and clinical/lifestyle dimensions 
successively, we divided our modeling process into two phases. Initially, by adopting the elastic net 
algorithm, we derived an association model based on 102-SNP features, where the best choice of 
parameter was chosen according to the classification accuracy of the fitted elastic net model. 
Secondly, we calculated an elastic-net-driven gene score for each individual, indicating their genetic 
risk of CAD. Following that, by further applying elastic net algorithm, we combined the derived 
gene score with 31 lifestyles/clinical covariates to construct a more comprehensive CAD association 
model. Finally, receiver operating characteristic (ROC) curves were plotted to assess the accuracy 
of both genetic and full models. The impacts of identified SNPs on the risk of CAD were further 
evaluated by odd ratios (ORs) and 95% confidence intervals (CIs) in terms of each genetic mode 
(i.e., additive, recessive and dominant modes) using logistic regression analysis. 



Crossover analysis[29] was adopted to explore the marginal effects and pairwise interactions 
among variables. In details, for a certain pair of dichotomous variables, A and B, after the 42 
contingency table is generated (see Table S2), the number of cases or controls is counted in each 
cell for a particular combination of the two variables, and then ORs are calculated using logistic 
regression to reflect the relative risk of this combination compared to the reference group (with no 
exposure to both A and B). Subsequently, the interaction index, the relative excess risk due to 
interaction (RERI), are calculated, which represents the difference between the combined effect of 
the two factors and the sum of their individual effects, and is often considered as the standard 
measure for interaction on the additive scale with case–control studies[30]. In particular, for a certain 
pair of dichotomous variables, A and B, RERI is calculated from different ORs as RERI=OR(A+, 

B+)−(OR(A+, B-)+OR(A-, B+)−1), where A+ or B+ indicates an exposure to variable A or B, whereas A- 
or B- represents a non-exposure status. The corresponding CI and p-value of RERI are used to 
indicate whether this interaction effect is statistically significant compared to the potential effects 
in the reference group (with no exposure to both A and B) due to any variables other than the two 
considered factors, A and B[31]. The crossover analysis and RERI calculation were implemented by 
SPSS 24.0. In all analyses, p values<0.05 were considered significant statistically. The purpose of 
this study is to explain CAD incidence through a relatively meaningful model, such as which SNP 
or life behavior factors are more likely to associate to CAD incidence, not to establish a model with 
very good performance in predicting CAD.

Results

Clinical Characteristics

The incidence of CAD in the study population within three years was 0.47%, which is higher 
than that of general Chinese population (0.09% every year) reported by Chinese cardiovascular 
disease report in 2017[3]. This was mainly because all subjects were over 40 years old in our study 
cohort, which increased the risk of CAD. According to previous studies, age is one of the major risk 
factors for CAD[7]. The composition ratio of gender is as follows: 45.7% of the subjects were male, 
and 54.3% were female. The median of SBP in the case group was significantly higher than that in 
the control group (p<0.05). For other features, the χ2 test found significant differences in 
hypertension and dyslipidemia history, current fruit and chicken intake between the case group and 
the control group (p<0.05) (Table 1).

Table 1. Basic characteristics
Characteristic CAD (+) CAD (-) t/χ2a P

Total 100 2013
Age, mean±SDb, year 67.55±11.88 58.57±10.96 56.03 <0.001
Sex, n (%)c 0.46 0.500

Male 49(49.00) 917(45.50)
Female 51(51.00) 1096(54.50)

Height, mean±SD, year 158.08±8.27 160.45±8.30 7.67 0.006
Waist, mean±SD, cm 82.87±8.02 81.22±8.22 3.85 0.050
SBP, mean±SD, mmHg 140.66±16.16 133.90±19.24 11.79 0.001
DBP, mean±SD, mmHg 83.32±10.31 81.61±11.99 3.29 0.070
BMI, mean±SD, kg/m2 23.62±3.52 23.25±3.11 -1.06 0.291



TC, mean±SD, mmol/L 4.91±0.91 4.87±0.91 0.17 0.679
TG, mean±SD, mmol/L 1.47±0.66 1.44±0.69 0.26 0.608
HDL-C, mean±SD, mmol/L 1.26±0.29 1.30±0.31 2.13 0.145
LDL-C, mean±SD, mmol/L 3.16±0.87 3.08±0.80 1.17 0.280
Hypertension history, n (%) 17.22 <0.001

Yes 38(38.00) 414(20.57)
No 62(62.00) 1599(79.43)

Dyslipidemia history, n (%)
Yes 70(70.00) 1131(56.18) 7.41 0.006
No 30(30.00) 882(43.82)

Current fruit intake, n (%) 8.57 0.032
Never 38(38.00) 662(32.89)
50-100g/d 59(59.00) 1111(55.19)
≥100g/d 3(3.00) 240(11.92)

Current chicken intake, n (%) 7.09 0.008
Never 40(40.00) 568(28.22)
1-7 times/week 54(54.00) 1241(61.65)
≥8times/week 6(6.00) 204(10.13)

SD, standard deviation; SBP, systolic blood pressure; DBP, diastolic blood pressure; BMI, body mass index; TC, total cholesterol; 

TG, triglyceride; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol. Bold values are 

statistically significant with p values <0.05 
a t/χ2: t stands for the t-value calculated by t-test and χ2 stands for the chi-square value derived from the chi-square test; 
b mean±SD: for continuous variables, mean and standard deviation were calculated within CAD(+) or CAD(-) subgroup. 

c n (%): for categorical variables, n describes the number of individuals carrying this characteristic in CAD(+) or CAD(-) subgroup, 

and % is the constituent ratio of this characteristic within each subgroup.

The gene-based association

 The variable selection of elastic net penalization is achieved by shrinking the coefficients of 
the variables not related to the response to zero. Thus, variables with non-zero coefficients are 
considered as important predictors. With the initial 102 SNP inputs, the gene-based association 
model (model A) finally recruited 3 SNPs with nonzero coefficients in the elastic net model. The 
gene scores were then calculated from the elastic net regression, where each of the 3 SNPs were 
weighted by their coefficients, respectively. The 3 associated SNPs were rs671 in ALDH2, and 
rs6751537 in ADCY3, rs11641677 in BCMO1. The area under the curve (AUC) value of model A 
was 0.59 (95% CI: 0.53-0.65) (Figure 2).



Figure 2. ROC curves of the derived gene-based association model (model A) and the subsequently 
constructed all covariates-based association model (model B), which attained AUCs of 0.59 and 
0.71 respectively.

The association between the 3 SNPs and CAD was also examined separately under each 
genetic mode (Table 2). Without adjustment, the recessive models of all 3 SNPs were found to be 
significantly associated with CAD risk. In additive models, the AA genotype of rs671 (unadjusted 
OR=2.45, 95% CI=1.28-4.68, p=0.007) and the GG genotype of rs6751537 (unadjusted OR=3.63, 
95% CI=1.83-7.20, p<0.001) increased the risk of CAD, while the GG genotype of rs11641677 
reduced the risk of CAD (unadjusted OR=0.36, 95% CI=0.14-0.90, p =0.032). People carrying the 
AA genotype in terms of rs671 recessive model (unadjusted OR=2.13, 95% CI = 1.16-3.92, 
p=0.015), GG genotype in terms of rs6751537 recessive model (unadjusted OR=3.76, 95% 
CI=1.92-7.39, p<0.001) had a higher risk of CAD than each of the reference groups respectively. 
All of the studied SNPs in the control subjects were in Hardy–Weinberg equilibrium (p>0.05). After 
the adjustments of other 8 captured risk factors (i.e., age, height, SBP, waist, LDL-C, intake of 
chicken and history of hypertension and dyslipidemia selected by elastic net in the “All covariates-
based model” section below), we further investigated each genetic mode for all 3 involving SNPs 
for their contribution to the risk of CAD. The results showed that, the recessive models of rs671 
(adjusted OR=2.12, 95% CI=1.12-4.03, p=0.021) and rs6751537 (adjusted OR=3.47, 95% CI=1.70-
7.09, p=0.001) were still significantly associated with CAD (Table 2). In additive models, the AA 
genotype of rs671 (adjusted OR=2.51, 95% CI=1.27-4.95, p=0.008) and the GG genotypes of 
rs6751537 (adjusted OR =3.36, 95% CI=1.62-6.94, p=0.001) still increased the risk of CAD (Table 
2). 

Table 2. Associations of genetic variants with CAD risk

SNP Genotype

Unadjusted OR 

(95%CI)
Unadjusted P

Adjusted OR 

(95%CI)
Adjusted P

rs671

additive AG/GG 1.34(0.87-2.06) 0.186 1.41(0.91-2.20) 0.127

AA/GG 2.45(1.28-4.68) 0.007 2.51(1.27-4.95) 0.008

dominant AA+AG/GG 1.49(0.99-2.23) 0.055 1.56(1.03-2.38) 0.037

recessive AA/AG+GG 2.13(1.16-3.92) 0.015 2.12(1.12-4.03) 0.021

rs6751537



additive AG/AA 0.87(0.53-1.42) 0.583 0.88(0.52-1.22) 0.623

GG/AA 3.63(1.83-7.20) <0.001 3.36(1.62-6.94) 0.001

dominant GG+AG/AA 1.16(0.76-1.77) 0.500 1.16(0.75-1.79) 0.512

recessive GG/AG+AA 3.76(1.92-7.39) <0.001 3.47(1.70-7.09) 0.001

rs11641677

additive GA/AA 0.82(0.55-1.24) 0.355 0.78(0.51-1.19) 0.254

GG/AA 0.36(0.14-0.90) 0.032 0.39(0.15-0.97) 0.044

dominant GG+GA/AA 0.73(0.49-1.10) 0.129 0.71(0.47-1.08) 0.100

recessive GG/GA+AA 0.40(0.16-0.99) 0.047 0.43(0.17-1.08) 0.072

Adjust factors: age, height, SBP, waist, LDL-C, intake of chicken, history of hypertension and dyslipidemia. p 

value < 0.05 was considered statistically significant.

All covariates-based model

Considering that model A only focused on the influence of genetic variants on CAD risk, we 
further constructed an all covariates-based model (model B), which recruit not only the gene-score 
derived from model A, but also comprehensively account for other 31 CAD-related physiological, 
biochemical and lifestyle indicators. 9 variables with nonzero coefficients were finally screened out 
in model B by using the same technique of elastic net. The red line represents the model B in Figure 
2, and the AUC for model B was 0.71 (95% CI: 0.62-0.78). In terms of AUC value, the accuracy of 
model B was 20.34% higher than that of model A, showing great contribution of clinical/lifestyle 
factors to CAD risk. On the other hand, the AUC confidence intervals of model A and B overlapped 
slightly, which may be due to the relatively small sample size of the study, resulting in increased 
variance in AUC when measuring the models’ discriminative ability. The 9 variables of model B 
were the gene-score, history of hypertension and dyslipidemia, SBP, age, waist, LDL-C, the intake 
of chicken and height. 6 of the 9 variables were found to be significantly associated with CAD 
individually (p<0.05) (Table 3). Table S3 listed the coefficients of each variable derived from the 
elastic net algorithm.

Table 3. Associations of gene-score and lifestyle-related factors with risk of CAD
Characters OR 95%CI P
Gene-score 3.65 1.36-9.79 0.010
Hypertension history 2.37 1.56-3.60 <0.001
Dyslipidemia history 1.82 1.18-2.82 0.007
Age 1.07 1.05-1.09 <0.001
Waist 1.02 1.00-1.05 0.050
SBP 1.02 1.01-1.03 0.001
LDL-C 1.14 0.89-1.46 0.280
Height 0.97 0.94-0.99 0.006
Current chicken intake 0.78 0.64-0.94 0.008
p value < 0.05 was considered statistically significant.

Interactions between gene polymorphism and other covariates 



Except for a few disease cases purely associated with genetic disease or environmental factors, 
the vast majority of diseases are the result of interplay of genetic and environmental effects, 
especially for complex traits of chronic diseases. Thus, we further explored marginal effects and 
pairwise interactions among several variables using crossover analysis. Table 4 revealed that 
hypertension and dyslipidemia both have significant marginal effects to increase the risk of CAD. 
In particular, compared with individuals without hypertension and dyslipidemia, those with 
hypertension or dyslipidemia alone had a significantly increased risk of CAD by reaching an OR of 
2.40 (95% CI:1.10-5.23, p=0.028) for hypertension and an OR of 1.76 (95% CI:1.03-3.03, p=0.004) 
for dyslipidemia, respectively, showing their significant individual effects to increase CAD risk. On 
the other hand, the index RERI was also adopted to investigate the interactive effect between 
hypertension and dyslipidemia, which was calculated as RERI=OR(hypertension+, 

dyslipidemia+)−(OR(hypertension+, dyslipidemia-)+OR(hypertension-, dyslipidemia+)−1). As a result, RERI reached 0.73 
(95% CI: -1.49-2.96, p=0.051) for hypertension and dyslipidemia interaction, indicating that the 
estimated joint effect of hypertension and dyslipidemia on CAD was not statistically different from 
the sum of the estimated marginal effects of the two diseases individually, and thus no significant 
interaction was observed between hypertension and dyslipidemia to increase the risk of CAD. 
Although the interaction between hypertension and age was not significant as well according to the 
index RERI, compared with people without hypertension and younger than 60 years old, people 
without hypertension and older than 60 years old had an increased risk of CAD (OR=3.76, 95% 
CI=1.76-8.03, p=0.001), while the risk of CAD in people with hypertension and over 60 years old 
increased by 7.02 times (OR=7.02, 95% CI= 3.64-13.55, p<0.001). 

Table 4. Interactions between hypertension and dyslipidemia, hypertension and age for the 
risk of CAD.

Hypertension (-) Hypertension (+)

OR (95%CI) For 

hypertension patients 

within strata of risk 

characters

RERI (95%CI) p

case/control (n) OR (95%CI) case/control (n) OR (95%CI) 0.73 (-1.49-2.96) 0.051

Dyslipidemia (-) 20/730 1 10/152
2.40 (1.10-5.23)

p=0.028

2.40 (1.10-5.23)

p=0.028

Dyslipidemia (+) 42/869
1.76 (1.03-3.03）

p=0.004
28/262

3.90(2.16-7.04)

p<0.001

2.21 (1.34-3.64)

p=0.002

OR (95%CI) for dyslipidemia within strata of risk 

characters

1.76 (1.03-3.03）

p=0.004

1.62 (0.77-3.44)

p=0.204

Age <60 years 15/885 1 47/714

3.88 (2.15-7.00)

p<0.001

3.88 (2.15-7.00)

p<0.001 0.38 (-3.04-4.16) 0.843

Age≥60 years 13/204

3.76 (1.76-8.03)

p=0.001 25/210

7.02 (3.64-13.55)

p<0.001

1.87 (0.93-3.75)

p=0.079

OR (95%CI) for older people within strata of risk 

characters

3.76 (1.76-8.03)

p=0.001

1.81(1.09-3.01)

p=0.023

p value < 0.05 was considered statistically significant.



We also investigated pairwise interactions between 3 SNPs (rs671, rs6751537 and rs11641677) 
of 3 genes (ALDH2, ADCY3 and BCMO1) and dyslipidemia/hypertension on CAD (Table 5 and 
Table 6). A significant positive interaction between rs671 and dyslipidemia was observed 
(RERI=3.36, p=0.05) in our study, which implied that the joint effect of rs671 and dyslipidemia on 
the CAD risk was greater than the sum of their independent main effects (Table 5). Although the 
interactions between the other two SNPs and dyslipidemia didn’t reach the statistical significance, 
the studies showed that individuals with dyslipidemia and high genetic risk were at a higher risk of 
developing CAD than those without dyslipidemia or having low genetic risk. For example, 
compared to individuals with low genetic risk of rs6751537 and without dyslipidemia, people with 
dyslipidemia and high genetic risk had a 7.43-fold increase in CAD risk (OR=7.43, 95% CI=3.14-
17.55, p<0.001). 

Although no significant interactions were identified for all of the 3 SNPs and hypertension on 
the CAD risk (Table 6, with p values of RERI>0.05), significant cumulative effects were still 
remarkable. For instance, compared to people carrying GA+GG genotype of rs11641677 and having 
no history of hypertension, people with AA genotype and hypertension would have a 9.13-fold 
increase in the risk of CAD (OR=9.13, 95% CI=2.17-38.34, p=0.003).

Table 5. Interaction between gene polymorphism and dyslipidemia for the risk of CAD
 Dyslipidemia (-) Dyslipidemia (+)

case/control(n) OR（95%CI） case/control(n) OR（95%CI）

OR (95%CI) for 

dyslipidemia patients within strata 

of genotype 

RERI (95%CI) p

rs671

Non-risk allele carriers

(AG+GG）
28/816 59/1065

1
1.61 (1.02-2.56)

p=0.041

1.61 (1.02-2.56)

p=0.041

Risk allele carriers

（AA）
2/66 11/66

3.36 (0.12-6.84) 0.050

0.88 (0.21-3.79)

p=0.867

4.86 (2.32-10.19)

p<0.001

5.5 (1.17-25.78)

p=0.031

OR (95%CI) for risk allele carriers 

within strata of dyslipidemia 

0.88 (0.21-3.79)

p=0.867

1.73 (1.23-2.45)

p=0.002

rs6751537

Non-risk allele carriers

(AG+AA） 
27/852 62/1097

1 p=0.014
1.78 (1.13-2.83)

p=0.014

Risk allele carriers

（GG） 
3/30 8/34 3.49(-3.43-10.40) 0.321

3.16 (0.91-10.98) 7.43 (3.14-17.55) 2.35 (0.57-9.68)

p=0.071 p<0.001 p=0.241

OR (95%CI) for risk allele carriers 

within strata of dyslipidemia

3.16 (0.91-10.98)

p=0.071

4.16 (1.85-9.37)

p=0.001

rs11641677



Non-risk allele carriers

(GA+GG）
1/105 4/130

1 3.23 (0.36-29.34) 3.23 (0.36-29.34)

p=0.298 p=0.298

Risk allele carriers

（AA）
29/777 66/1001 0.77 (-3.19-4.74) 0.771

3.92 (0.53-29.07) 6.92 (0.95-50.39) 1.77 (1.13-2.76)

p=0.18 p=0.05 p=0.01

OR (95%CI) for risk allele carriers 

within strata of dyslipidemia

3.92 (0.53-29.07)

p=0.18

2.14(0.77-5.98)

p=0.14

p value < 0.05 was considered statistically significant.

Table 6. Interaction between gene polymorphism and hypertension for the risk of CAD
 Hypertension (-) Hypertension (+)

case/control(n) OR (95%CI) case/control(n) OR (95%CI)

OR (95%CI) for 

hypertension patien

ts within strata of 

genotype 

RERI (95%CI) p

rs671

Non-risk allele carriers

(AG+GG）
52/1494 35/387

1 2.60 (1.67-4.05) 2.60 (1.67-4.05)

p<0.001 p<0.001

Risk allele carriers

（AA）
10/105 3/27 -1.14 (-5.37-3.09) 0.600

2.74 (1.35-5.54) 3.19 (0.94-10.86) 1.17 (0.30-4.54)

p=0.005 p=0.063 p=0.824

OR (95%CI) for risk allele carriers 

within strata of hypertension

2.74 (1.35-5.54)

p=0.005

1.23 (0.60-2.06)

p=0.75

rs6751537

Non-risk allele carriers

(AG+AA） 
55/1549 34/400

1 2.39 (1.54-3.72) 2.39 (1.54-3.72)

p＜0.001 p＜0.001

Risk allele carriers

（GG） 
7/50 4/14 2.7 (-6.80-12.22) 0.580

3.94 (1.71-9.09) 8.05 (2.57-25.24) 2.04 (0.52-7.98)

p=0.001 p<0.001 p=0.305

OR (95%CI) for risk allele carriers 

within strata of hypertension

3.94 (1.71-9.09)

p=0.001

3.36 (1.05-10.78)

p=0.041

rs11641677

Non-risk allele carriers

(GA+GG）
2/195 3/40

1 7.31 (1.18-45.19) 7.31 (1.18-45.19)



p=0.032 p=0.032

Risk allele carriers

（AA）
60/1404 35/373 -1.36 (-11.14-8.43) 0.791

4.17 (1.01-17.18)

p=0.048

9.13 (2.17-38.34)

p=0.003

2.19 (1.42-3.37)

p<0.001

OR (95%CI) for risk allele carriers 

within strata of hypertension

4.17 (1.01-17.18)

p=0.048

1.25 (0.37-4.24)

p=0.723

p value < 0.05 was considered statistically significant.

Discussion
In this study, we initially developed a gene-based association model (model A) and secondly 

constructed an all covariates-based model (model B) to explain the risk of CAD. In particular, the 
all covariates-based model (model B) simultaneously considered both genetic and lifestyle/clinical 
factors, and finally incorporated a gene-score variable and 8 physiological, biochemical and lifestyle 
characteristics as significant CAD risk factors, where the gene-score variable was specifically 
calculated from 3 significant SNPs (rs671, rs6751537 and rs11641677) that survived in model A. 
With an acceptable accuracy (AUC=0.71), the constructed all covariates-based model (model B) 
made use of both genetic variants and easily accessible lifestyle/clinical metrics, and could serve as 
a useful tool to interpret risk of CAD as well as its pathogenesis. 

In this study, we found that the risk of CAD in people carrying AA genotype of rs671 in 
ALDH2 was 2.45 times higher than people carrying GG genotype, which was consistent with most 
previous genetic and expression studies[32, 33]. The distribution of aldehyde dehydrogenase 2 (coded 
by ALDH2) in the body is specific, and it is mainly concentrated in the heart, brain, liver and other 
organs with dense mitochondria[34]. It is an important oxidase involved in alcohol metabolism in 
cell mitochondria, so early exploration of the relationship between ALDH2 and diseases had focused 
on areas directly related to drinking behavior, such as hepatitis and digestive system[34-36]. In 
addition, the mutation of rs671 gene will reduce the activity of aldehyde dehydrogenase 2, leading 
to blocked alcohol metabolism and accumulation of aldehydes in the liver[37], which eventually 
result in the dysfunction of cardiovascular system and incidence of CAD. Compared to those 
carrying the GG genotype, the people carrying the AA genotype are more likely to experience 
discomfort such as flushing, nausea, palpitations, and more severe symptoms of alcohol poisoning 
and alcohol allergy while drinking, and thus they were at a higher CAD risk under the same drinking 
habits[38]. In our study, no differences were observed in drinking behavior between the case group 
and the control group, which may be due to the limited sample size.

ADCY3 plays an important role in many physiological and pathophysiological processes, such 
as adiposity and glucose homeostasis[39]. In this study, the GG genotype of rs6751537 in ADCY3 
was significantly associated with the risk of CAD, which was confirmed in the previous study[40]. 
Numerous studies have shown that different genetic variants located near or in ADCY3 are 
significantly associated with obesity[39]. For example, both candidate gene studies and genome-wide 
association approaches have demonstrated that ADCY3 polymorphisms are associated with obesity 
in European and Chinese populations[40]. Epigenetic studies have indicated that increased DNA 
methylation levels in ADCY3 are involved in the pathogenesis of obesity[41]. Furthermore, biological 
studies using animal models have implicated that adenylate cyclase 3 (coded by ADCY3) 
dysfunction will increase body weight and fat mass, while the activation of adenylate cyclase 3 can 



reduce the body weight[39]. It is well known that obesity was an impactful risk factor of 
cardiovascular and cerebrovascular diseases, which would lead to lipid abnormalities and type 2 
diabetes, and subsequently to increased risk of CAD and other cardiovascular diseases[4, 39].

There is a significant role of BCMO1 in the central cleavage and conversion of dietary 
provitamin carotenoids to vitamin A (retinal)[42]. It is reported that SNPs of BCMO1 may affect the 
efficiency of Beta-carotene (BC) transformation into vitamin A in vivo, and then influence blood 
concentrations of BC[43]. It is widely known that vitamin A is very important for vision, immune 
response, cell differentiation, embryonic development, and membrane and skin protection in the 
small intestine[42, 43]. Studies have reported[44, 45] that vitamin A has a strong association with heart 
health in mouse, which is mainly because vitamin A deficiency could lead to heart gene expression 
changes. For example, after a heart attack, the amount of vitamin A delivered from the liver to the 
heart will increase significantly. The strong association between rs11641677 (in BCMO1) and CAD 
found in our study may further confirm the essential role of vitamin A in heart function at a 
molecular level, indicating that vitamin A deficiency caused by BCMO1 mutations may increase 
the risk of CAD as well as other heart diseases.

Many studies have shown that age, waist circumference, blood pressure and blood lipid can 
affect CAD, which was also found in our study[3, 6, 8, 46]. Besides, cardiovascular pathologies are 
widely regarded as strongly influenced by diet and epigenetic effects related to molecules contained 
in food or drinks. For instance, chicken consumption is another lifestyle protector that we found can 
significantly reduce the risk of CAD. It is reported that chicken consumption has a protective effect 
on the occurrence of many chronic diseases[45]. The main dietary guidelines for prevention of CAD 
developed by the National Cholesterol Education Program in the United States suggested that people 
should limit their total fat intake to less than 30% of their energy intake and the saturated fatty acid 
to 8-10%. Compared with red meat, white meat such as chicken and fish have a higher protein 
content and a lower fat level[47]. In addition, numerous epidemiological studies have shown that 
populations following the Mediterranean Diet have a reduced incidence of cardiovascular diseases, 
as such diet has a favorable lipid profile for cardiovascular function, with a high percentage of 
unsaturated fatty acids. In last decades, epigenetic interaction between the nutrients and DNA has 
been explored from the nutrigenomics perspective to explain some cellular and molecular 
phenomena underlying human pathological conditions, and reveal how food components and diet 
can influence the trajectory toward human health outcomes. In particular, it has been shown that, 
several dietary molecules can act as epigenetic modulators of DNA methylation, histone 
acetylation/deacetylation and small non-coding RNA action by directly adding/removing epigenetic 
marks or indirectly regulating relevant gene expression[48, 49]. These progress on nutrigenomic 
effects could help explain our findings about the diet’s influence on the risk of CAD.

The RERI index is generally considered to be the most suitable parameter for investigating the 
importance of quantitative interaction in the additive model[30]. We studied pairwise interactions 
between genetic and biomedical factors, as well as the interplay of certain biomedical factors on the 
risk of CAD. Among these factors, the rs671-dyslipidemia interactive effect was found statistically 
significant. The results imply that the mutation of rs671 can lead to the obstruction of alcohol 
metabolism and the accumulation of acetaldehyde in the liver, thereby accelerating the deterioration 
of dyslipidemia, and subsequently resulting in CAD incidence. These risk factors may act in a high-
dimensional interactive way to increase the risk of CAD where further molecular-level research is 
needed to confirm this. From a mechanistic point of view, a gene can modify its expression both 



due to a polymorphism and to an epigenetic modification of its promoter. Our findings of gene 
mutations and their interactions with clinical conditions to increase CAD risk may indicate that, 
compared with the possible epigenetic modifications caused by food component or diet as we 
discussed above, allele polymorphisms appear to have more weight in gene expression, especially 
in genes involved in metabolism related to cardiovascular pathologies, which was also supported by 
the findings of previous studies[50].

The major limitation of this study is the relatively small sample size. As a result, risk factors 
with small-to-moderate effect size may not be detected as impactful CAD associators in this study, 
which may further lead to increased variation, reduced power, and potentially misleading findings 
of our results. Second, our study only focused on the Han population in southern China. Given the 
population’s unique genetic architecture and specific environmental/lifestyle characteristics, our 
findings may not be directly applied to other regions and population settings. Third, our model is 
designed to explain correlation, not prediction, which means that only association implications can 
be interpreted from the results of the study, not causation. Therefore, importantly, long-term studies 
should be conducted in the future to identify whether these factors are the causes of CAD. Fourthly, 
many people may be influenced by recall bias and social desirability when filling in the lifestyle 
questionnaire, and several diet-related habits in our questionnaire were recorded in consumption 
frequency rather than quantity (such as current chicken intake), therefore, our model’s external 
application needs to be conducted with cautions.

Conclusion
In conclusion, our study constructed an association model and identified 3 SNPs and 8 

covariates that were significantly associated with the incidence of CAD in southern Chinese Han 
population. These results will provide theoretical insights into genetic and lifestyle/clinical risk 
factors of CAD and facilitate the development of early screening tools for CAD risk and illuminate 
the etiology of CAD.
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Abstract
Backgrounds: To investigate associations of genetic factors and environmental factors with 
coronary artery disease (CAD), We collected medical reports, lifestyle details, and blood samples 
of 2113 individuals, and then used the polymerase chain reaction-ligase detection reaction to 
genotype the targeted 102 SNPs.  Methods: We adopted elastic net algorithm to build an 
association model that considered simultaneously genetic and lifestyle/clinical factors associated 
with CAD in Chinese Han population.  Results: It is found that, in terms of genetic variants, the 
AA genotype of rs671 in the additive (adjusted OR=2.51, p=0.008) and recessive (adjusted 
OR=2.12, p=0.021) models, the GG genotype of rs6751537 in the additive (adjusted OR=3.36, 
p=0.001) and recessive (adjusted OR=3.47, p=0.001) models, and GG genotype of rs11641677 in 
additive model (adjusted OR=0.39, p=0.044) was associated with the increased risk of CAD. In 
terms of lifestyle/clinical factors, the history of hypertension (unadjusted OR=2.37, p<0.001) and 
dyslipidemia (unadjusted OR=1.82, p=0.007), age (unadjusted OR=1.07, p<0.001) and waist 
circumference (unadjusted OR=1.02, p=0.05) would significantly increase the risk of CAD, while 
height (unadjusted OR=0.97, p=0.006) and regular intake of chicken (unadjusted OR=0.78, p=0.008) 
reduced the risk of CAD. Significant interactions were found between hypertension and 
dyslipidemia (RERI = 4.88, p=0.014), as well as between rs671 and dyslipidemia (RERI = 3.36, 
p=0.05).  Conclusion: In this study, we constructed an association mode and identified a set of 
SNPs and lifestyle/clinical risk factors of CAD in Chinese Han population. By considering both 
genetic and non-genetic risk factors, the built model may provide implications for CAD 
pathogenesis and clues for screening tool development in Chinese Han population.
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Highlights
 An all covariates-based association model was built to explain the risk of CAD
 The model incorporated both a gene-score and 8 lifestyle/clinical risk factors
 The gene-score was derived from ALDH2, ADCY3 and BCMO1 polymorphisms
 The findings may provide implications for CAD pathogenesis in Chinese Han population


