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Evolutionary Optimization of COVID-19 Vaccine
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Abstract—Vaccination uptake has become the key factor that
will determine our success in containing the coronavirus pneu-
monia (COVID-19) pandemic. Efficient distribution of vaccines
to inoculation spots is crucial to curtailing the spread of the
novel COVID-19 pandemic. Normally, in a big city, a huge num-
ber of vaccines need to be transported from central depot(s)
through a set of satellites to widely scattered inoculation spots
by special-purpose vehicles every day. Such a large two-echelon
vehicle routing problem is computationally difficult. Moreover,
the demands for vaccines evolve with the epidemic spread over
time, and the actual demands are hard to determine early and
exactly, which not only increases the problem difficulty but also
prolongs the distribution time. Based on our practical experience
of COVID-19 vaccine distribution in China, we present a hybrid
machine learning and evolutionary computation method, which
first uses a fuzzy deep learning model to forecast the demands
for vaccines for each next day, such that we can predistribute
the forecasted number of vaccines to the satellites in advance;
after obtaining the actual demands, it uses an evolutionary algo-
rithm (EA) to route vehicles to distribute vaccines from the
satellites/depots to the inoculation spots on each day. The EA
saves historical problem instances and their high-quality solu-
tions in a knowledge base, so as to capture inherent relationship
between evolving problem inputs to solutions; when solving a new
problem instance on each day, the EA utilizes historical solutions
that perform well on the similar instances to improve initial solu-
tion quality and, hence, accelerate convergence. Computational
results on real-world instances of vaccine distribution demon-
strate that the proposed method can produce solutions with
significantly shorter distribution time compared to state-of-the-
arts and, hence, contribute to accelerating the achievement of
herd immunity.

Index Terms—Evolutionary optimization, hybrid machine
learning and evolutionary computation, novel coronavirus pneu-
monia (COVID-19), vaccine distribution, vehicle routing.
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I. INTRODUCTION

THE NOVEL coronavirus pneumonia (COVID-19), caused
by severe acute respiratory syndrome corona-virus 2

(SARS-CoV-2), has infected over 400 million people (by
February 2022) and caused significant global social and eco-
nomic distress. With slowly increasing population immunity
and evolutionary selection pressure on the virus, new and
highly virulent strains of SARS-CoV-2 are emerging, which
could quickly exacerbate the crisis [1]. According to the cur-
rently available epidemiological data [2], vaccination uptake
has become the key factor that will determine our success in
containing the COVID-19 pandemic currently enveloping the
world [3]. Therefore, distributing available vaccines to inocula-
tion spots in an efficient and accurate way plays an important
role in achieving herd immunity and breaking the chain of
transmission of the virus.

The motivation of this article comes from our practice in
COVID-19 vaccine distribution in Hangzhou and other cities
of Zhejiang Province, East China. During the peak period
of vaccination in Hangzhou city, the daily average number
of vaccinations exceeds 100 000. Available (newly produced
and purchased) vaccines are stored in one or several cen-
tral depots that are typically located in the center of the city,
while inoculation spots are widely scattered throughout the
city, most of them being far away from the depots. Therefore,
the public health department employs a two-echelon distribu-
tion approach that first delivers the vaccines from the depot(s)
to a set of satellites (regional facilities), each of which is
then responsible for distribution to inoculation spots (cus-
tomers) in a region by special-purpose vehicles on each day.
Such a two-echelon distribution approach can be significantly
more efficient than direct distribution from the depot(s) to all
customers [4]. However, it still has the following difficulties.

1) The corresponding two-echelon vehicle routing problem
(2E-VRP) [5] is an NP-hard problem, and a large
problem instance with over ten satellites and hundreds of
customers is impossible or very difficult to solve using
existing exact or heuristic optimization methods.

2) As the vaccine demand of each spot changes every day,
the optimal routing solution for the distribution from
depot(s) to satellites and that for the distribution from
each satellite to customers also change; therefore, we
need to solve a new problem instance every day.

3) The exact demands are hard to determine in an accu-
rate and early manner, while vaccinations are expected
to start as early as possible (typically, no later than
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(a) (b) (c)

Fig. 1. Comparison of the direct distribution approach, the basic two-echelon distribution approach, and our approach combining demand forecasting,
predistribution, and fast distribution. In (c), red arrows denote predistribution of forecasted demands, which can begin much earlier than the final distribution.
(a) Direct distribution from depots to inoculation spots. Challenges: 1) high complexity and 2) demands are known late, and the delivery begins late. (b) Two-
echelon distribution. Advantages: Reduced complexity. Challenges: demands are known late, and the delivery begins late. (c) Predistribution and two-echelon
distribution. Advantages: Reduced complexity & early delivery; Challenges: Demand forecasting

9:30 A.M.); hence, the time for computing and imple-
menting the distribution solution is very limited.

To address the above difficulties, we propose a hybrid
machine learning and evolutionary computation method, which
consists of the following steps to plan the vaccine distribution
on each day.

1) Use a machine learning approach to forecast the demand
of each inoculation spot for the next day.

2) Route vehicles to predistribute the forecasted number of
vaccines to the satellite of each region in advance, so as
to significantly shorten the actual distribution time for
the next day.

3) After obtaining the exact demands, route vehicles to dis-
tribute vaccines from the satellites/depots to inoculation
spots.

For the first-step task, we propose a fuzzy deep neural
network to forecast the demand. The second-step task can be
regarded as a basic and relatively small VRP instance that can
be efficiently solved using the existing algorithms. The third-
step task, however, is a large VRP instance, for which we
propose an evolutionary algorithm (EA) that utilizes historical
knowledge of vaccine distribution in early days to improve
the problem-solving performance on new instances, that is,
when initializing a population of solutions to a new problem
instance on each day, the EA selects historical solutions to
similar instances from the knowledge base, and then adapts
these solutions to the new instance to improve initial solution
quality. In this way, initial solutions to different instances are
continually evolved according to their inputs (demands), and
final solutions are obtained by the EA continually evolving
the corresponding initial solutions. We find that this strategy
can effectively accelerate the convergence and improve the
final solution quality. Consequently, our hybrid machine learn-
ing and evolutionary computation method has significantly
improved the efficiency of vaccine distribution in practice.
Fig. 1 illustrates three solution approaches and highlights the
advantages of our approach.

The main contributions of this article can be summarized
as follows.

1) We introduce machine learning to forecast vaccine
demands, so as to enable predistribution and reduce

the complexity of the large-scale, complex two-echelon
vaccine distribution problem.

2) We utilize historical knowledge of vaccine distribu-
tion obtained by the EA in early days to improve the
problem-solving performance over time.

3) We apply the proposed hybrid machine learning and evo-
lutionary computation method to real-world vaccine dis-
tribution, which significantly improves the effectiveness
of epidemic prevention and control.

The proposed method can also be extended to many similar
problems, such as medical mask distribution and scheduling
of other nonpharmaceutical interventions in epidemics [6] and
relief goods distribution in disasters.

The remainder of this article is organized as follows.
Section II discusses related work on solution methods for med-
ical supply distribution and, in particular, 2E-VRP. Section III
describes the machine learning approach for forecasting the
demands for vaccines, Section IV formulates the vaccine dis-
tribution problem after forecasting and predistribution, and
Section V proposes the EA for solving the problem. Section VI
presents the computational results, and Section VII concludes
with a discussion.

II. RELATED WORK

The distribution of medical supplies to customers timely
and effectively plays a crucial role in response to large-scale
emergency events, such as natural disasters and epidemics.
In the literature, a medical supply chain is typically mod-
eled as a complex network consisting of many different
parties at various stages [7]. Compared to ordinary supply
chains, medical supply chains have specific characteristics,
including rigorous time constraints and special transportation
and storage conditions [8]. Mete and Zabinsky [9] proposed
a stochastic optimization method for the storage and dis-
tribution of medical supplies under various disaster types
and magnitudes. The resulting solutions can suggest load-
ing and routing of vehicles to transport medical supplies.
Lei et al. [10] studied a problem of personnel scheduling
and supplied provisioning in emergency relief operations;
they proposed a mathematical programming-based rolling
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horizon heuristic for finding near-optimal solutions. Liu and
Zhang [11] proposed a dynamic medical logistics model that
couples medical demand forecasting and logistics planning to
satisfy the demand and minimize the total cost, characterizing
decision making at various levels of hospitals, distribution cen-
ters, pharmaceutical plants, and the transportation in between
them. Büyüktahtakın et al. [12] presented a mixed-integer
programming epidemics-logistics model for determining the
optimal amount, timing, and location of medical resources to
minimize the total number of infections and fatalities under
a limited budget, which was validated on the case of the
2014–2015 Ebola outbreak in Africa. The model was mod-
ified by Liu et al. [13] by adapting capacity constraints, and
applied to resource planning in the 2009 H1N1 outbreak in
China.

In recent years, EAs have been increasingly used to
solve large complex medical supply distribution prob-
lems. Arabzad et al. [14] proposed a multiobjective EA
(MOEA) combining the nondominated sorting genetic algo-
rithm (NSGA-II) [15] and parallel neighborhood search
to solve a multiobjective location-inventory problem in a
distribution center network with the presence of different
transportation modes and third-party logistics, simultane-
ously considering three conflicting objectives including total
costs, earliness and tardiness, and deterioration rate. Gan
and Liu [16] presented a multiobjective optimization problem
considering both the total unsatisfied time and transporta-
tion cost in emergency logistics scheduling, and proposed a
modified NSGA-II by designing three repair operators to gen-
erate improved feasible solutions to the problem. To solve a
multiperiod dynamic emergency resource scheduling problem,
Zhou et al. [17] proposed an MOEA based on decompo-
sition with new evolutionary operators designed according
to the intrinsic properties of the problem. Osaba et al. [18]
modeled a drugs distribution problem with pharmacological
waste collection as a clustered VRP with pickups and deliv-
eries, asymmetric variable costs, forbidden roads, and cost
constraints; they proposed a discrete bat algorithm, where
differences among the bats are calculated based on two differ-
ent neighborhood structures. To improve the prevention and
control of COVID-19, Ling et al. [19] studied a problem of
integrated civilian-military scheduling of medical supplies, and
they proposed an MOEA based on water wave optimization
(WWO) metaheuristic [20] to efficiently solve the problem.
In order to design an integrated production-distribution-
inventory-allocation-location medical supply chain during
COVID-19, Goodarzian et al. [21] proposed three hybrid
metaheuristics: 1) ant colony optimization; 2) fish swarm algo-
rithm; and 3) firefly algorithm, all hybridized with a variable
neighborhood search.

In the COVID-19 pandemic, the distribution of emergency
medical supplies in a big city normally uses a multiech-
elon approach. As an extension of the basic VRP, 2E-
VRP [5] has a significantly larger solution space than its
single-echelon counterpart, and existing exact algorithms are
only capable to solve instances with up to 3–6 satellites
and tens of customers [22]–[24]. Recently, increasing efforts
have been devoted to metaheuristics and EAs for finding

near-optimal solutions to large 2E-VRP instances within an
acceptable solution time. Hemmelmayr et al. [25] proposed
an adaptive large neighborhood search (ALNS) heuristic for
2E-VRP by adapting operators to the problem structure.
Breunig et al. [26] proposed a hybrid metaheuristic combining
enumerative local searches with destroy-and-repair heuris-
tics. Grangier et al. [27] proposed an ALNS algorithm for
a 2E-VRP with satellite synchronization, which is capable of
solving instances with up to 200 customers and ten satellites.
The ALNS metaheuristic was also used by Enthoven et al. [28]
to solve a 2E-VRP with covering options and by Li et al. [29]
for a 2E-VRP with satellite bisynchronization.

To solve a 2E-CVRP with stochastic demands,
Wang et al. [30] proposed a genetic algorithm (GA) by
designing a simple encoding and decoding scheme, a
modified route copy crossover operator, and a satellite-
selection-based mutation operator. Results showed that the
expected cost obtained by the GA was not greater than
that of the best known solution for each test instance.
Zhou et al. [31] proposed a hybrid multipopulation GA for
a multidepot 2E-VRP, which exhibited good performance
on a large family of instances. Yan et al. [32] proposed a
graph-based fuzzy EA that integrates a graph-based fuzzy
satellite-to-customer assignment scheme into an iteratively
evolutionary learning process to minimize the total cost of
2E-VRP. Anderluh et al. [33] studied a multiobjective 2E-
VRP, considering not only the cost but also negative external
effects, such as emissions and disturbance; they proposed a
metaheuristic that combines a large neighborhood with an
ε-constraint method to approximate the set of Pareto-optimal
solutions to the problem. To solve a real-time 2E-VRP with
pickup and delivery that needs to be solved within seconds,
Martins et al. [34] proposed a constructive-heuristic-based
biased-randomized algorithm using a skewed probability
distribution to modify its greedy behavior. Results showed
that, using massive parallel computing, the method generates
competitive results for instances with up to 150 customers.

There are also many studies on predicting the demands
of vaccines as well as other medical supplies, typically
using statistical regression methods and neural network mod-
els [35]–[37]. However, demand forecasting in public health
emergencies like COVID-19 is challenging, mainly because
there are no sufficient historical training data. Therefore,
some research efforts have been devoted to recent machine
learning methods, including unsupervised deep learning, trans-
fer learning, and multitask learning, which requires few or
small number of training samples. To support drug pro-
curement in hospitals, Song et al. [38] proposed a deep
learning model to predict disease morbidities from big data,
and then estimated the demands of different drug and deter-
mine their optimal combination. Song et al. [39] proposed
a new tridirectional transfer learning method for predicting
the gastric cancer morbidity based on an existing model for
predicting the morbidity of another disease in another region
by fusing two different directions of transfer learning, which
achieves a significantly higher prediction accuracy compared
with the state-of-the-art bidirectional transfer learning meth-
ods. Yong et al. [40] proposed a long short-term memory
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(LSTM)-based deep learning model, which can map the input
series to a new vector space effectively, to forecast demand for
vaccines, the data of which are recorded in the blockchain and
used for vaccine production plans. To forecast the ambulance
demand for supporting rational and dynamic allocation of
ambulances and hospital staffing in Singapore, Lin et al. [41]
combined several models including LSTM, support vector
machine (SVM), and convolutional neural network, to per-
form prediction based on multinature insights of ambulance
demands. Zheng et al. [42] presented a co-evolutionary fuzzy
deep transfer learning (CoFDTL) method for forecasting the
demand of different relief supplies by sharing knowledge
among different tasks (e.g., types of disasters, such as earth-
quake, typhoon, and flood), which effectively overcomes the
shortage of data in each task. The fuzzy deep learning model
combing unsupervised denoising training and supervised tun-
ing has demonstrated its performance on various learning and
classification problems [42]–[45].

III. FUZZY MACHINE LEARNING FOR

DEMAND FORECASTING

On each day, the demands for vaccines come from three
main sources: 1) people that have made appointments for vac-
cination; 2) people that have been assigned with emergency
tasks (e.g., medical first aid, visiting epidemic areas, and other
high-risk tasks) that need vaccine protection; and 3) people
that directly go to the inoculation spots without appointments.
The deadline for appointments is 21:00 of the previous day;
people without appointments are only admitted before 12:00
of each day.

These demands change on each day. We aim to forecast
the demand of each inoculation spot at around 18:00 of each
previous day, such that the forecasted number of vaccines can
be predistributed to the corresponding satellite in the previous
night. Therefore, actually, we need to forecast the number of
people who would make appointments during 18:00–21:00,
who would be assigned with emergency tasks after 18:00,
and who would directly go to the inoculation spot without
appointments. We consider the following affecting features.

1) Number of people who have made appointments before
18:00 on the current day.

2) Number of people who have been assigned with emer-
gency tasks that need vaccine protection before 18:00
on the current day.

3) Number of people who have made appointments before
18:00 on each of the previous seven days.

4) Number of people who have made appointments after
18:00 on each of the previous seven days.

5) Number of people who have been assigned with emer-
gency tasks that need vaccine protection before 18:00
on each of the previous seven days.

6) Number of people who have been assigned with emer-
gency tasks that need vaccine protection after 18:00 on
each of the previous seven days.

7) Number of people who directly go to the inoculation
spot(s) without appointments on each of the previous
seven days.

Fig. 2. Structure of the deep learning model, which consists of stacked layers
of autoencoders and a regression layer on top of the uppermost autoencoder.

8) Number of residents.
9) Numbers of residents in 0–18, 18–30, 30–50, 50–70, and

over 70 years old.
10) Numbers of residents in 0–18, 18–30, 30–50, 50–70,

and over 70 years old that have been vaccinated the first
dose.

11) Numbers of residents in 0–18, 18–30, 30–50, 50–70, and
over 70 years old that have been vaccinated the second
dose.

12) Total infection rates (since the outbreak of the epidemic).
13) Current infection rates.
For each of the 55 underlying features, we use the val-

ues in the subregion assigned to the current inoculation spot,
the whole region assigned to the corresponding satellite, and
the whole city. Therefore, an input vector to the forecasting
model has 55 × 3 = 165 values. We use a fuzzy machine
learning forecasting model, which consists of four layers of
autoencoders [46] and a multivariate linear regression (MLR)
layer on the topmost autoencoder to produce the forecasted
demands, including the total number of vaccines demanded
and the number of vaccines for people without appointments,
as shown in Fig. 2. Each autoencoder consists of an encoder
and a decoder. Given a D-dimensional input vector x, the
encoder maps it into a D′-dimensional hidden representation
y through a sigmoid activation function s

f (x) = s(Wx+ b) (1)

and the decoder maps the hidden representation y back to a
reconstructed vector x′ in the input space

f ′(y) = s
(
WTy+ b′

)
(2)

where W is a D′ ×D weight matrix, and b and b′ are two bias
vectors.

In order to effectively learn the uncertain probability distri-
bution over cross-layer units, we use fuzzy model parameters,
where each parameter β is an interval-valued Pythagorean
fuzzy number (PFN) [47]

β =
〈[

μL
β, μU

β

]
;
[
νL
β, νU

β

]〉
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where [μL
β, μU

β ] and [νL
β, νU

β ] are the membership and non-
membership degrees, respectively, satisfying that [μL

β, μU
β ] ∈

[0, 1], [νL
β, νU

β ] ∈ [0, 1], and (μU
β )2 + (νU

β )2 ≤ 1. This type of
fuzzy parameters enables the model to learn both how an input
contributes to and how it does not contribute to the production
of the output [48].

The model learning consists of two stages. The first stage is
unsupervised training of autoencoders layer by layer, at each
layer learning the parameters to minimize the reconstruction
error on the training set X

minJ (W, b, b′) =
∑

x∈X

(
‖x, f ′(f (x))‖ + λ‖Jf (x)‖2F

)
(3)

where ‖x, x′‖ denotes the distance between each input vector x
and its corresponding reconstructed vector x′, λ is a parameter
controlling the strength of penalization, and ‖Jf (x)‖2F is the
Frobenius norm of the Jacobian to penalize the sensitivity of
the hidden representation to the input noise [49]

‖Jf (x)‖2F =
∑

1≤d≤D

∑

1≤d′≤D′

(
∂fd′(x)

∂xd

)2

. (4)

The second stage is supervised training of the whole model
to minimize the rooted mean square error (RMSE) on the
labeled training set X ′

minL = 1

|X ′|
∑

x∈X ′

√
(E(rx)− r̂x)

2 + w′
(
E(r′x)− r̂′x

)2 (5)

where r̂x and r̂′x are the labels of total demand and the demand
for people without appointments in sample x, and E(rx) and
E(r′x) are the expected values the corresponding outputs of the
model, respectively.

We employ the Hessian-free (HF) algorithm [50] for unsu-
pervised training of each layer and use an EA [45] for
supervised training of the whole model.

IV. PROBLEM OF TWO-ECHELON VACCINE DISTRIBUTION

After forecasting the demand of each region, we predis-
tribute the forecasted number of vaccines from depot(s) to the
satellite in advance for the next day. In case that the total
forecasted number exceeds the total available stock at the
depots, we can purchase vaccines from the market or mobi-
lize vaccines from other cities. However, if these vaccines
cannot arrive before the next day, the number of vaccines
to be distributed must be decreased (in the same ratio for
each region, or in different ratios determined by the public
health department). Moreover, the public health department
can take an order-up-to-level policy to replenish more vac-
cines (if available) to avoid possible shortages in later days,
but discussion of this policy is out of the scope of this arti-
cle. Anyway, the problem of predistribution is a basic VRP
of relatively small size, for which we employ a neighborhood
search algorithm [51] to efficiently solve it. Of course, many
other heuristics and EAs [52]–[54] can be alternatives.

Here, we focus on vaccine distribution after demand
forecasting learning and predistribution. Typically, during
0:00–2:00, we obtain the actual number of vaccines for people

TABLE I
MATHEMATICAL VARIABLES USED IN THE VACCINE

DISTRIBUTION PROBLEM

with appointments and people with emergency tasks that need
vaccine protection for each inoculation spot. We consider the
sum of this number and the forecasted number of vaccines for
people who would directly go to the inoculation spot without
appointments as the actual demand of the inoculation spot. If
the number of vaccines available at each satellite is sufficient
for the total demand of all inoculation spots in the region,
the problem is to distribute vaccines from each satellite to
the inoculation spots in the region, which is also a relatively
small VRP instance that can be efficiently solved. However,
in most cases, there are errors between the forecasted demand
and the actual demand, resulting in that some regions are with
vaccine shortages while other regions are with vaccine sur-
pluses. In such cases, the problem is to distribute vaccines
from satellites/depots to all inoculation spots, i.e., all satel-
lites are regarded as depots. Consequently, the problem is a
multidepot VRP that can be formulated as follows (Table I
lists the main symbols used in the problem formulation).

Let O be the set of inoculation spots, ro be the actual vaccine
demand of each spot o ∈ O, D be the set of depots, S be the
set of satellites, ad and as be the number of vaccines available
at each depot d ∈ D and each satellite s ∈ S, and Vd and
Vs be the vehicle set available at each depot d ∈ D and each
satellite s ∈ S, respectively. The travel time between each pair
of points p1 and p2 is assumed to be known and is denoted
as t(p1, p2) (∀p1, p2 ∈ O ∪ D ∪ S). Let V be the set of all m
vehicles, and Cv be the capacity of each vehicle v ∈ V (as we
consider heterogeneous vehicles). The problem is to determine
the route xi for each vehicle vi ∈ V (i.e., xi is a sequence
of inoculation spots assigned to vi, 1 ≤ i ≤ m), such that
the vaccine-number-weighted accumulative distribution time
is minimized

min f (X) =
∑

o∈O roT(o)
∑

o∈O ro
(6)

where X = {x1, x2, . . . , xm} is the solution vector, T(o) is the
time at which spot o receives vaccines, ro is used as the impor-
tance weight of spot o such that spots with larger demands
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are expected to receive vaccines (and, hence, start vaccina-
tion) earlier, and the constant denominator

∑
o∈O ro is used

to make the objective function represent the average weighted
distribution time over all spots. Let si denote the depot or satel-
lite from which vehicle vi departs and ni denote the length of
route xi; T(o) in each route xi can be iteratively calculated as
follows (1 ≤ i ≤ m):

T(xi,1) = t
(
si, xi,1

)
(7)

T(xi,j+1) = T(xi,j)+ t
(
xi,j, xi,j+1

)
, 1 ≤ j < ni. (8)

Here, we regard loading/unloading times as constants and
do not explicitly include them in the formulation because they
are typically trivial compared to the travel time along the (rel-
atively) long routes. We also omit the effects of other factors,
such as traffic conditions and storage limits because vaccine
distribution is typically regarded as a critical public health
management task and given a high priority in resource assign-
ment and traffic control. These detailed calculations can be
easily added without affecting the framework of our algorithm.

For notational simplicity, when needed, we also use xi to
denote the set of inoculation spots in the route. Each solution
X must satisfy the following basic constraints.

1) Each inoculation spot is visited by at most one route

xi ∩ xi′ = ∅ ∀i, i′ ∈ {1, 2, . . . , m} ∧ (i �= i′). (9)

2) All inoculation spots must be assigned
m⋃

i=1

xi = O. (10)

3) Each route cannot violate the vehicle capacity
ni∑

j=1

rxi,j ≤ Cvi ∀1 ≤ i ≤ m. (11)

4) Each inoculation spot must receive vaccines no later than
the deadline T̂ (set to 9:30 A.M. in our study)

T(xi,ni) ≤ T̂ ∀1 ≤ i ≤ m. (12)

As vaccine distribution in a big city typically involves a
dozen of satellites/depots and hundreds of inoculation spots,
the problem has a significantly large solution space.

V. EVOLUTIONARY OPTIMIZATION FOR

VACCINE DISTRIBUTION

In this section, we describe the EA proposed for the vaccine
distribution problem. As the vaccination program often lasts
for a period, we need to solve a new problem instance every
day. Although different instances have different demands, the
demands do not change dramatically over time; moreover, the
instances share common features, such as the distribution of
depots, satellites, and inoculation spots, available vehicles, and
the underlying transportation network. Therefore, we have an
opportunity to capture inherent relationship between evolving
problem inputs (demands) to solutions, such that historical
knowledge of vaccine distribution in early days can be uti-
lized to improve the algorithm performance on new instances,
which is the main difference of our EA from existing EAs for

VRP. We also use machine learning to infer a threshold of the
distance between an inoculation spot and its satellite to reduce
the search space and improve search performance.

A. Knowledge Base of Historical Instances and Solutions

We construct a knowledge base, which saves two types of
knowledge items. Each first-type item consists of an instance
of the vaccine distribution problem and a set of known high-
quality solutions to the instance. Given two instances I and
I′, we evaluate the distance between them based on the
differences among their inputs as

D(I, I′) =
∑

s∈S∪D

(
as − a′s

)2 + wr

∑

s∈S

(
rs − r′s

)2 (13)

where as (available number of vaccines) and rs = (
∑

o∈Os
ro)

(demanded number of vaccines) are the inputs to the instance
I, a′s and r′s are the inputs to the instance I′, and wr is a
coefficient equal to or larger than 1 (set to 2 in our study).

Each second-type item consists of a subproblem instance
of vaccine distribution from a satellite/depot and a set of
known high-quality subsolutions to the subinstance. Given two
subinstances Is and I′s, we evaluate the distance between them
as

D(
Is, I′s

) =
∑

o∈Os∩O′s

(
ro − r′o

)2 +
∑

o∈Os\O′s
r2

o +
∑

o∈O′s\Os

r′2o (14)

where Os and O′s denote the subsets of inoculation spots
assigned to s in Is and I′s, and ro and r′o are the demands
of inoculation spot o in the two subinstances, respectively.

For each instance/subinstance, we save at most NB solu-
tions/subsolutions, where NB is a control parameter (set to 10
in our study). A new solution will replace an existing solution
in the knowledge base only if it is a new best known solu-
tion for the instance/subinstance, or it satisfies two conditions:
1) its objective function value is not larger than twice the value
of the best known one and 2) by replacing the nonbest solution
that has the minimum average distance to all other solutions
in the knowledge base, it will increase this minimum aver-
age distance. The distance between two routes xi and x′i of a
vehicle vi, denoted by d(xi, x′i), is calculated as follows.

1) Initialize the distance to 0.
2) For each spot in xi but not in x′i, increase the distance

by 1.
3) For each spot in x′i but not in xi, increase the distance

by 1.
4) Obtain the longest common subsequence of the two

routes.
5) For each spot in xi and x′i but not in the longest common

subsequence, calculate the difference between its index
and the index of the longest common subsequence in
each route; if the difference is not the same in the two
routes, increase the distance by 0.5.

For two subsolutions Xs and X′s to a subinstance of vaccine
distribution from a satellite/depot s, their distance d(Xs, X′s) is
calculated as follows.

1) Sort the routes in Xs in nonincreasing order of the
number of spots.
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Fig. 3. Example of two solutions to an instance using three vehicles for
distribution from a depot to ten spots. 1) For vehicle v1, spots 5 and 7 are
in x1 but not in x′1, and spot 1 is in x′1 but not in x1, and so we have
d(x1, x′1) = 3. 2) For v2, spot 8 is in x′2 but not in x2; spot 10 is in both x′2
and x2, but it is not in the longest common subsequence {6, 4}, and its index
differences from the subsequence are not the same in the two routes; hence,
we have d(x2, x′2) = 1.5. 3) For v3, spots 1 and 8 are only in x3 and spots
5 and 7 are only in x′3, and so we have d(x3, x′3) = 4. The distance between

the two solutions is d(X, X′) =
√

32 + 52 + 1.52 = 5.22.

2) For each route xi in Xs, match it with a route x′i whose
distance to xi is the smallest among all unmatched routes
in X′s.

3) Calculated d(Xs, X′s) as the square root of the distances
of all pairs of matched routes.

For two solutions X and X′ to an instance of the problem,
their distance is calculated as the mean square root of the
distances of all pairs of subsolutions in the two solutions

d(X, X′) =
√ ∑

s∈S∪D

d2(Xs, X′s). (15)

Fig. 3 presents an example for calculating the solution
distance.

Based on the first-type knowledge, we construct another
machine learning model. The input features to the model con-
sist of ad for all d ∈ D and as and rs for all s ∈ S in a
problem instance. The model output is the maximum travel
time t† between an inoculation spot and the satellite/depot
to which it is assigned in the best known solution x∗ to the
instance

t† = max
s∈S∪D

{

max
vi∈Vs

{

max
o∈x∗i

t(o, s)

}}

. (16)

We use MLR to model this relation. In this study, we
train each model instance using samples in the same city for
prediction. We can also extend the model for prediction in dif-
ferent cities but, if so, geographical distribution information
should also be considered as model inputs. For each new
instance, we use the model to predict the t† value; if the value
is smaller than the smallest value in the knowledge base, it is
set to the latter. We then use 2t† as a threshold for assigning
any inoculation spot to a satellite for the instance, which can
significantly reduce the search space of the algorithm.

B. Solution Initialization

To solve a new instance I of the problem, the EA initial-
izes a population of NP solutions, which are divided into two
classes. Each first-class solution is generated based on solu-
tions to similar instances and subinstances in the knowledge
base. First, we randomly select a “base” solution X0 to a simi-
lar instance from the knowledge base. The similar instance can
be the one that has the minimum distance to I, denoted by D∗I ,
or another instance whose distance to I is not larger than 2D∗I .

We take the inoculation spot assignment in X0 for X. Next, for
each subinstance of vaccine distribution from a satellite/depot
s ∈ S ∪ D, we randomly select a “base” subsolution X0

s to a
similar subinstance from the knowledge base and then adapt
the routes in X0

s to the given subinstance using the following
procedure.

1) Remove any spot in O′s\Os from the routes.
2) Sort all unassigned spots in Os\O′s in a nonincreasing

order of ro.
3) For each spot in Os\O′s, insert it into the route with

the earliest completion time at a position, which has the
minimum objective function value among all possible
positions.

We generate at most NP/2 first-class solutions for the
population, but remove any duplicated ones.

Each second-class solution is randomly initialized using the
following procedure (where the threshold 2t† is applied).

1) For each satellite s with sufficient vaccines for its region,
randomly assign each inoculation spot in the region
to a vehicle (with sufficient remaining capacity) at the
satellite.

2) For each remaining inoculation spot o, randomly assign
it to a vehicle (with sufficient remaining capacity) at a
satellite/depot s satisfying that t(o, s) ≤ 2t†.

3) For each vehicle, employ the NEH heuristic [55] to
initialize its route.

4) For each satellite/depot, continually move an inoculation
spot from the route with the maximum completion time
to the route with the minimum completion time until
doing so cannot improve the solution fitness.

C. Solution Evolution

After initializing the population, the EA iteratively evolves
the solutions. At each generation, each solution X in the pop-
ulation produces a child solution X′ by performing a series of
random local search (RLS) operators including:

1) randomly swapping two spots in a route;
2) randomly moving a spot o from a route xi to another xi′ ,

under the condition that the capacity of vi′ is not vio-
lated, and the distance between o and the satellite/depot
of xi′ is not larger than 2t†;

3) randomly swapping two spots o and o′ between two
routes xi and xi′ , under the condition that the capacity of
either vehicle is not violated, and the distance between
o and the satellite/depot of xi′ and that between o′ and
the satellite/depot of xi are both not larger than 2t†.

The number of RLS operations performed on X is a random
number between 0 and λ(X), the variability of X calculated as
follows:

λ(X) = m

2
·
(

4

m

)(f (X)−fmin+ε)/(fmax−fmin+ε)

(17)

where fmin and fmax are the minimum and maximum objec-
tive function values among the population, respectively, and ε

is a small positive number to avoid division by 0. The idea
of assigning each solution with a variation is borrowed from
evolutionary programming [56], [57], and making the varia-
tion inversely proportional to the solution fitness is borrowed
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Algorithm 1: EA for the Vaccine Distribution Problem
After Demand Forecasting and Predistribution

1 Initialize a population of solutions according to Section
V-B;

2 Let X∗ be the best among the solutions;
3 while the stop condition is not met do
4 Compute the average distance d from all other

solutions to X∗;
5 foreach X in the population do
6 Compute λ(X) according to Eq. (17);
7 Let λ be a random number between 0 and λ(X);
8 Produce a child X′ by performing λ-step local

search operations on X;
9 if f (X′) < f (X) then

10 Replace X with X′;
11 if f (X) < f (X∗) or d(X, X∗) > d then
12 perform ENS on X;
13 if f (X) < f (X∗) then
14 X∗ ← X;

15 else if X has not been improved during
consecutive ĝ generations then

16 Replace X with a new solution initialized
according to Section V-B;

17 return X∗.

from the WWO metaheuristic [20], [58], such that good/bad
solutions search small/large areas to balance exploration and
exploitation.

If the child X′ is better than X, it replaces X in the pop-
ulation. To avoid search stagnation, if a solution X has not
produced a better child during a number ĝ of consecutive gen-
erations (where ĝ is a control parameter), it will be replaced
by a new solution randomly generated using the approach
described in Section V-B, where the best known solution
obtained by the EA is also considered as an exemplar as
knowledge-base solutions.

We also enhance the EA with an extensive neighborhood
search (ENS), which is performed on any new solution X′ that
is better than the current best known solution X∗, or is better
than the parent X and its distance to X∗ is larger than the aver-
age distance to X∗ of all other solutions in the population. The
ENS has the following neighborhood search operators (using
ideas borrowed from [59]).

1) Single-route improvement, which first moves up a point
while moving down another point in the route; if no
improvement is obtained, swaps two points in the route.

2) Multiroute improvement, which first moves a point from
one route to another; if no improvement is obtained,
swap two points between a pair of routes; if no improve-
ment is obtained, exchange three points between a triple
of routes; any operation cannot violate the distance
threshold 2t†.

Algorithm 1 presents the pseudocode of the EA.

TABLE II
CONTROL PARAMETERS OF THE PROPOSED EA

VI. COMPUTATIONAL RESULTS

We have applied the proposed hybrid machine learning and
evolutionary computation method to vaccine distribution in
Hangzhou City, Zhejiang Province, China, since April 7, 2021.
There were two depots and ten satellites, and the number of
inoculation spots slightly changed between 200–240. Before
April 7, the public health department used a two-echelon
distribution approach (without demand forecasting and pre-
distribution) which employed a GA adapted from [30]. For
the application on April 7, we used the data from March 24
to April 6 as the samples to train the fuzzy deep learning
model; since then, we retrained the model with the new data
on each day. For the EA for optimizing vaccine distribution
after demand forecasting and predistribution, we first tuned the
control parameters of the algorithm on the simulated instances
of the seven days before April 7, resulting in a setting shown
in Table II; after each seven days, we retuned the parameters
with new instances, but the values did not change much.

Here, we present the application results from April 7 to
April 30. To validate the performance of the proposed EA
with the knowledge base (denoted by KB-EA), we not only
simulate the use of the previous GA-based two-echelon (GA-
2E) distribution method on each day’s vaccine distribution task
(without predistribution) but also employ the following heuris-
tics and metaheuristics to solve each day’s instance of the
vaccine distribution problem after predistribution.

1) A reactive greedy randomized adaptive search (RGRAS)
method [60].

2) A hybrid ant colony-variable neighborhood search
(ACO-VNS) algorithm [61].

3) A discrete firefly algorithm with compound neighbor-
hoods (DFA-CNs) [62].

4) A hybrid GA with VNS (GA-VNS) [63].
5) A hybrid VNS with greedy randomized adaptive

memory programming search (VNS-GRAMPS) algo-
rithm [64].

6) A variant of our EA without using the knowledge base.
Each comparative algorithm is run for 30 times on each

instance. The computational environment is a workstation
with an i7-6500 2.5GH CPU, 8-GB DDR4 RAM, and an
NVIDIA Quadro M500M card. Fig. 4 presents the objec-
tive function values (i.e., average weighted distribution times)
obtained by the comparative algorithms on the 24 instances.
The average weighted distribution time of the previous two-
echelon distribution method ranges between 120–170 min and
is around 145 min in average. In comparison, by forecasting
and predistributing the demands, all other seven algorithms
significantly decrease the average distribution time. Among
these seven algorithms, the proposed KB-EA achieves the
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Fig. 4. Objective function values (average weighted distribution times in minutes) obtained by the GA-2E method previously used by the organization, the
proposed KB-EA, and the other six comparative algorithms on the instances of vaccine distribution in Hangzhou on 24 days from April 7 to April 30. The
results show that the solutions of KB-EA have significantly shorter distribution times (shown in the green line) than other algorithms in all cases.

Fig. 5. Distribution solution produced by our method for the instance of April 16. A green line denotes a vehicle route within a predefined region, a blue
line denotes a vehicle route which covers inoculation spots cross two or more regions, and a red line denotes a vehicle route directly from the central depot
to inoculation spots. The results show that cross-region delivery plays an important role in the solution.

minimum average distribution time of 51.1 min. The key
difference between EA and KB-EA is that the former does
not utilize the knowledge base for solution initialization; the
average distribution time of EA is 71.1 min, which is also
significantly longer than that of KB-EA, demonstrating that
utilizing high-quality historical solutions in solution initial-
ization effectively accelerates the evolutionary process and
therefore improves the final results. Another evidence is that,
as we can observe from Fig. 4, although the previous GA-2E
method and EA have significantly different performances,

they have similar changing forms, that is, their performances
change with the instances in a similar way. In comparison,
because KB-EA utilizes historical knowledge in initializing
solutions for new instances, its performance does not only
affected by the instance on hand but also improves over time:
the average distribution time of KB-EA on April 7 is the high-
est among the 24 days and is not significantly from that of the
other algorithms, but the time generally decreases from April 7
to April 30, and finally achieves a significant performance
advantages over the others. Fig. 5 presents the vehicles routes
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Fig. 6. Distribution solution produced by the 2E-VRP approach without predistribution for the instance of April 16. A red line denotes a depot-to-satellite
route, a green line denotes a satellite-to-customer route, while a yellow line following a green line indicates that the corresponding customer(s) would receive
vaccines after the deadline.

for vaccine distribution in our solution in April 16: among
23 vehicle routes, 11 routes (in green) cover only inocu-
lation spots inside the corresponding regions, ten (in blue)
cover inoculation spots cross two or more regions, and two
are from central depots to inoculation spots. The results indi-
cate that, after predistribution, it is necessary and efficient to
allow cross-region vaccine distribution. For comparison, Fig. 6
presents the vehicles routes in the solution produced by the
EA without predistribution, where inoculation spots on yel-
low lines would receive vaccines after the deadline T̂ . This is
because, in the standard 2E-VRP approach, a satellite could
begin the delivery only after it receives vaccines from the
depot(s) and, hence, some customers have to wait a long time.
In our approach, predistribution of vaccines to satellites allows
the satellites to begin the delivery much earlier, and there
is no customer receiving vaccines after the deadline in our
solution.

In general, the performances of the other six algorithms
other than KB-EA change over instances in a manner similar
to that of GA-2E, as all of them do not utilize historical knowl-
edge. Among these six algorithms, EA does not always show
the best performance. The average distribution time of VNS-
GRAMPS is only 65.3 min, and that of DFA-CN is around
70.8 min, both being shorter than that of EA. The average dis-
tribution times of the other three algorithms are longer than
EA, where those of RGRAS and GA-VNS are around 78.5 and
78.4 min, respectively. These two algorithms perform simi-
larly with other algorithms on some relatively simple instances
(such as the instances of April 26, 27, 29 and 30), but per-
form much worse than others on some more difficult instances
(such as the instances of April 16–21), which reveals that they

are suitable for solving some simple instances, but their per-
formances dramatically deteriorate with the increase of the
instance difficulty.

According to Wilcoxon rank-sum tests, on the instance of
April 7, the result of KB-EA has no statistical difference with
those of VNS-GRAMPS and DFA-CN, but is significantly
better than those of RGRAS, ACO-VNS, and GA-VNS; on
each of the other 23 instances, the result of KB-EA is signifi-
cantly better than those of all other algorithms. The results
demonstrate that our knowledge-based EA exhibits consid-
erable performance advantages over not only the previous
method without predistribution but also popular EAs for the
extended VRP after predistribution.

Next, to validate the performance of the fuzzy deep autoen-
coder (FDAE) forecasting model in combining with KB-EA,
we also test the following five forecasting models by combin-
ing each of them with the KB-EA.

1) A basic three-layer feedforward artificial neural network
(ANN) model.

2) An auto-regressive integrated moving average (ARIMA)
model [65].

3) A least square SVM (LSSVM) model [66], [67].
4) A deep multiscale convolutional LSTM (CLSTM)

Network model [68].
5) A basic deep autoencoder (DAE) model [46] using the

same structure as our FDAE but using standard crisp
parameters instead of fuzzy ones.

The structures and parameters of these models are all tuned
by the evolutionary optimization method [45]. In Fig. 7, the
graph at the top presents the forecasting accuracies of different
machine learning models, and the graph at the bottom presents
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Fig. 7. Comparison of different machine learning models in combining with KB-EA on the 24 instances. The top graph shows the forecasting accuracies
of the different forecasting models, and the bottom graph presents the objective function values (average weighted distribution times in minutes) obtained by
KB-EA combined with the forecasting models. The results show that on almost all instances, FDAE obtains the highest prediction accuracies, and KB-EA
combined with FDAE obtains the shortest distribution times.

the average weighted distribution time (in minutes) obtained
by KB-EA combined with these machine learning models. In
general, the forecasting accuracies of the models increase over
time with the increasing amount of historical data, which con-
sequently improves the distribution performance of the hybrid
machine learning and evolutionary computation methods. The
forecasting accuracy of the traditional ANN model is the
lowest and most unstable, because the number of influence fea-
tures for demand forecasting is large, and the shallow network
structure is inefficient in learning in the high-dimensional fea-
ture space. The forecasting accuracies of the other five models
and the distribution performances of their combinations with
KB-EA are relatively stable. Initially (after training on the
data from March 24 to April 6), LSSVM exhibits the high-
est forecasting accuracy of 82.11%, and FDAE exhibits the
second highest accuracy of 79.27%. Since April 8, except on
April 11 the accuracy of FDAE is slightly lower than LSSVM,
on all other days the accuracy of FDAE is always higher than
LSSVM and the other four models. In general, the forecast-
ing performance advantages of FDAE over the other models
also increase over time. In particular, the advantage of FDAE
over DAE demonstrates that the use of fuzzy parameters effec-
tively improve the model performance, as the input features
often contain fuzzy and uncertain information. In terms of the
overall or average forecasting accuracy, FDAE exhibits the

highest performance that is significantly better than the other
models, the performance of LSSVM ranks second, and those
of ARIMA and CLSTM are relatively low.

The forecasting performance advantages of FDAE also
result in the distribution performance advantages of KB-EA
combined with FDAE over KB-EA combined with other
machine learning models. As we can observe from the bot-
tom graph in Fig. 7, similar to their forecasting performances,
the distribution performance obtained by KB-EA with ANN
is the worst and most unstable; the distribution performances
obtained by KB-EA with other five models generally increase
with time, where those obtained by KB-EA with ARIMA and
KB-EA with CLSTM are relatively low, and that obtained by
KB-EA with FDAE is the best.

To validate the relationship between forecasting accuracy
and distribution time, we also use the performance of KB-EA
with FDAE as the benchmark to calculate the ratio of the
average weighted distribution time difference to the forecasting
accuracy difference of each other model on each instance

RAT = f − fb
(accb − acc)× 100%

(18)

where accb is the forecasting accuracy of the benchmark model
(FDAE), fb is the objective function value (average weighted
distribution time) obtained by KB-EA with FDAE, and acc
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Fig. 8. Values of RAT [defined in (18)] of the comparative models. The results
show that if the forecasting accuracy is decreased by one percent, the weighted
distribution time will be increased by around one minute, demonstrating the
contribution of the forecasting accuracy to the distribution performance.

and f are the forecasting accuracy and average weighted
distribution time of the corresponding comparative model,
respectively. Fig. 8 presents the median, maximum, minimum,
first quartile (25%) and third quartile (75%) of RAT values of
each other model. The results show that the median RAT val-
ues of the models are 0.73–1.10, and most RAT values are
between 0.64–1.2 (from the first quartile to third quartile),
that is, in average, if the forecasting accuracy is decreased by
one percent, the weighted distribution time will be increased
by around 1 min, and the deviations are generally small. The
results clearly demonstrate that the distribution performance is
generally proportional to the forecasting performance, which
validates the fundamental principle of our hybrid machine
learning and evolutionary computation method.

Finally, we test the sensitivity of the EA to the threshold
of the distance between an inoculation spot and its satellite.
We compare the objective function values obtained by the EA
with threshold values of t†, 1.25t†, 1.5t†, 1.75t†, 2t†, 2.25t†,
and 2.5t†, and without threshold on the test instances. As we
can observe from the results shown in Fig. 9, the threshold
value of 2t† results in the best performance. When the thresh-
old value is too large, the search space increases rapidly, and
the probability that the EA finds optimal or near-optimal solu-
tions decreases dramatically; on the contrary, if the threshold
is too tight, many high-quality solutions are excluded dur-
ing the search process and, thus, the algorithm performance
reduces. Note that we do not intend to find a very accurate
value of the threshold, as the best threshold value changes with
instances, and our results show that using 2t† is a simple way
that performs well on most instances.

VII. CONCLUSION

In this article, we presented a hybrid machine learning and
evolutionary computation method for vaccine distribution in a
big city. The method first used fuzzy deep learning to fore-
cast the demands for vaccines for each next day, so as to
predistribute the forecasted number of vaccines to satellites
in advance, and then used EA to route vehicles to distribute
vaccines from the satellites/depots to inoculation spots on
each day. The EA utilized the knowledge of historical vac-
cine distribution to improve initial solution quality to each
new instance, and employed a distance threshold to reduce the

Fig. 9. Objective function values obtained by the proposed EA with different
thresholds α · t† (α = ∞ indicates without using the threshold). The results
show that using α = 2 achieves a promising general performance.

search space. Computational results on real-world instances
in Hangzhou, China, demonstrated the effectiveness and effi-
ciency of the proposed method compared to the previous
two-echelon distribution method and some state-of-the-art
EAs for VRP. The source code is available at our website
http://compintell.cn/en/dataAndCode.html. We are currently
extending the distribution problem by allowing using different
types of vehicles (including unmanned vehicles) while taking
the efficiency of medical staff into consideration [69].

The proposed hybrid machine learning and evolutionary
computation method can be useful for many other similar
resource distribution problems, such as the medical mask
distribution in epidemics, relief goods distribution in disas-
ters, and police deployment in riots, where the demands for
resources are often uncertain and change over time. For such
problems, demand forecasting and predistribution can signifi-
cantly reduce the total distribution time, and utilizing historical
distribution knowledge can effectively improve the problem-
solving performance over time. One limitation of the current
method is that the instance/solution measurements depicted
in Section V-A are problem specific, and our ongoing work
will generalize the measurements to cover a wide range of
problems.
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